

Müller Behälter Systeme

Deckelfässer

Spundfässer und Flaschen

Trichter

Silos

Container

Klappen

Fassroller

Sie wollten ein Fass. Jetzt haben Sie ein System

Das Müller Fass als Basismodul eines intelligenten Systems: Aus dem Fass für Lagerung oder Transport wird im Handumdrehen ein Prozessbehälter, der allen Anforderungen an einen modernen Produktionsablauf gerecht wird. Um einen reibungslosen Prozessablauf sicherzustellen, ermöglicht das Müllersystem das problemlose Erweitern mit z. B. Trichtern, Trocknungseinsätzen, Austraghilfen, Mischhauben oder Sieben und passt auch zu allen prozessrelevanten Schnittstellen: Vom Andocken über die staubfreie Beschickung, mit Handlinggeräten bis zur Entleerung in die Produktionseinheit.

Alle Systemteile sind modular aufeinander abgestimmt und untereinander austauschbar. Und weil das Müllersystem so flexibel ist, lassen sich Befüllung oder Lagervolumen individuell auf Ihre Produktion anpassen. Unterschiedliche Fließ-, Mischoder chemische Eigenschaften verlangen eben nicht Dutzende von unterschiedlichen Behältern, sondern nur den richtigen modularen Aufbau mit System. Standardgrößen sind direkt ab Lager lieferbar.

Müller Qualität – das gibt Ihnen Sicherheit

- Qualitätsmanagement ISO 9001:2000
- Zertifiziert nach Druckgeräterichtlinie 97/23/EG Modul A1, überprüfter Hersteller nach AD 2000-Merkblatt HP 0 und TRR 100 in Verbindung mit DIN EN 729-3
- ATEX-konforme Ausführung für alle Komponenten möglich
- Bauartgeprüfte Behälter UGM-überwacht
- UN Gefahrgutzulassung für alle gängigen Größen
- Sämtliche Standardartikel ab Lager lieferbar
- Es werden ausschließlich Bleche mit Abnahmeprüfungszeugnissen nach DIN EN 10204/3.1 B verwendet

Deckelfässer

Spundfässer und Flaschen

Im Ganzen perfekt, genial im Detail: Müller Deckelfässer

Für alle Anforderungen haben wir die passenden Behälter in der richtigen Qualität: Müller Deckelfässer in GMPgerechter Pharma Ausführung, stumpf geschweißt, spaltfrei ohne Falze und deshalb einfach und rückstandsfrei zu reinigen. Das sehr niedrige Taragewicht überrascht und dennoch können Sie sich auf maximale Stabilität verlassen.

Was Müller Fässer sonst noch bieten, zeigen auch die folgenden Details:

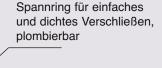
- Volumina von 0,1 bis 1000L und das in 16 verschiedenen Durchmessern
- Werkstoffe in Edelstahl Rostfrei 1.4541, 1.4301, 1.4404, Hastelloy und Sonderwerkstoffe
- Mit UN-Zulassung für Feststoffe und Flüssigkeiten
- Oberfläche Korn 320 geschliffen, für optimalen Produktaustrag, Ra \leq 0,6 μ m
- Für weitere Anforderungen elektrochemisch poliert, HALAR- oder PTFE-beschichtet

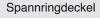
Deckelgriff

Tragegriffe

Fallgriffe

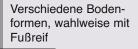
Etiketthalter


Drehzapfen



Scharnier

Kennzeichnung



Silikon O-Ring, transparent mit FDA-Zulassung im Fassdeckel eingelegt, für weitere Anforderungen sind Dichtungen auch in Viton, EPDM oder FEPummantelt erhältlich

GMP-gerechte Bordur, auf Wunsch auch zugeschweißt

Mit Sicken oder glattwandig, optimale Sickengeometrie für rückstandslose Entleerung

Einfache und effektive Handhabung – der Müller Fassdeckel mit Einfüllstutzen bildet ein geschlossenes System für ein sicheres und staubfreies Befüllen. Passgenau aufeinander abgestimmte Komponenten machen aus dem Fass einen Prozessbehälter – mit dem Müller Trocknungseinsatz für Granulate und Tabletten.

Doppelt schützt besser – in einer rauen Prozessumgebung bieten doppelwandige Fässer das entscheidende Plus an Robustheit und Sicherheit. Platz kostet Raum – und Raum kostet Geld. Konische Fässer sparen Platz. Ineinander gestapelt schrumpft ihr Raumbedarf ab dem zweiten Fass auf ein Drittel. Sehr praktisch, sehr wirtschaftlich, sehr zu empfehlen.

Doppelwandige Fässer zum Temperieren des Fassinhaltes – innen glattwandig, außen mit Spiralmantel, damit die Kühl- oder Heizflüssigkeit gleich weiß, wo's lang geht.

Alles ist rundum durchdacht – vollständige Restentleerung bei Platz sparender Bauhöhe ist mit dem benutzerfreundlichen, seitlichen Auslass garantiert. Typ und Größe des seitlichen Anschlusses sind frei wählbar.

Leerer Raum im Fass hat klare Nachteile – Transport und Lagervolumen sind nicht zum Nulltarif zu haben. Mit der Müller Mischhaube, per Spannring angekoppelt, wird leerer Raum erst dann angedockt, wenn er gebraucht wird.

Müller Fässer sind für unterschiedliche Umgebungsbedingungen ausgelegt – und sie passen sich gleichzeitig an wechselnde Prozessbedingungen an. Eine restlose Flüssigkeitsentleerung ist auch bei Überdruck sicher und problemlos mit dem Müller Steigrohr-Deckel möglich.

	2.1/01	2.1/06	2.1/03	2.1/04	2.1/05	2.2/01
Volumen in Liter	Stapelboden	Ultra clean	Flachboden	Boden gewölbt	seitlicher Auslass	konisch
Volur	Stapelbodell	Ollia clean	stapelbar	Boden gewoldt	Settlicher Auslass	KOHISCH
			Nenn-Durchn	nesser in mm		
0,1	-	-	80	-	-	-
0,2	_	_	80	_	_	_
0,5	120	_	120	120	_	-
1,0	120/170	-	120/170	120/170	_	-
1,5	170	-	170	170	-	-
3,0	170/250	_	170/250	170/250	250	_
5,0	250	250	250	250	250	-
10	250/315	250/315	250/315	250/315	250/315	_
20	315	315	315	315	315	_
30	315/375	375	315/375	315/375	315/375	375
35	_	315	-	_	_	_
50	375/450	375/450	375/450	375/450	375/450	375
70	375/450	375/450	375/450	375/450	375/450	375
100	450/560	450/560	450/560	450/560	450/560	450
120	_	_	-	_	_	500
150	560	560	560	560	560	_
170	-	-	_	_	_	560
200	560/600	560/600	560/600	560/600	560/600	560
250	600	600	600	600	600	-
300	600/710	600/710	600/710	600/710	600/710	_
350	710	710	710/800	710/800	710	-
400	710	710	710/800	710/800	710	_
500	_	_	800/950	800/950	_	-
600	_	-	950	950	_	_
700	-	-	950/1200	950/1200	-	-
800	_	_	1200	1200	_	_
1000	-	-	1200	1200	-	-
Anwendungen	Universell, mit Sicken, auf- einander stapel- bar. Glattwandig auf Wunsch. Optimal zu reinigen	Für Reinigung in Reinigungsanlagen entwickelt. Optimale Innen- und Außen- Reinigung. Bordur zugeschweißt	Optimal zu rei- nigen, glatt- wandig, aufei- nander stapel- bar	Innendruck, hohe Gewichte	100 %tiges Entleeren von Flüssigkeiten	Platz sparend ineinander sta- pelbar

	2.2/02	2.6/01	2.6/02	2.6/03	2.6/05	
Volumen in Liter	konisch gefalzt	Mantel- verstärkung	Schutzmantel	Isolations- mantel	Thermomantel druckstabil	
>			Nenn-Durchn	nesser in mm		
0,1	_	_	_	_	_	
0,2	_	_	_	_	_	
0,5	_	_	_	_	_	
1,0	_	120	120	120	_	
1,5	-	_	_	-	-	
3,0	_	170	170	170	_	
5,0	_	250	250	250	_	
10	_	250/315	250/315	250/315	_	
20	_	315	315	315	315	
30	375	315/375	315/375	315/375	315/375	
35	_	_	_	_	_	
50	375	375/450	375/450	375/450	375/450	
70	375	375/450	375/450	375/450	375/450	
100	450	450/560	450/560	450/560	450/560	
120	500	_	_	_	_	
150	-	560	560	560	560	
170	560	_	_	_	_	
200	560	560/600	560/600	560/600	560/600	
250	_	600	600	600	_	
300	_	710	710	710	710	
350	_	710/800	710/800	710/800	800	
400	_	710/800	800	800	800	
500	-	800/950	950	950	950	
600	_	950	950	950	_	
700	-	950/1200	1200	-	1200	
800	-	1200	1200	_	1200	
1000	-	1200	1200	-	-	
Anwendungen	Boden eingefalzt, Mantelnaht über- lappt (ab 100 Stck.)	Schutz gegen Beschädigung, innen glatt, sehr stabil, Außenmantel mit Haltesicken für maschinelles Handling	Schutz gegen Beschädigung des Innenfasses, innen glatt	Schützen und Isolieren	Heizen/Kühlen mit flüssigem Medium bei geringem Überdruck	

Willkommen da, wo es richtig zur Sache geht

Bei vielen Verfahren sind Flüssigkeiten und Gefahrstoffe wie Säuren,
Laugen, hochreine oder toxische
Medien im Spiel. Und sie müssen oft
unter extremen Bedingungen wie
hohem Druck oder hohen Temperaturen gelagert oder transportiert
werden. In den spezifischen
Prozessen der Pharmaindustrie
wiederum spielt das hygienische
Design eine wichtige Rolle. Für diese
Umgebungsbedingungen müssen
Spundfässer entsprechend ausgelegt
und besonders sicher sein.

Und genau da fühlen sich Müller Spundfässer in ihrem Element. Die entscheidenden Faktoren hierbei sind die richtige Auswahl des Materials, sowie eine glatte und spaltfreie Innenverarbeitung der Fässer. Nicht zu vergessen, die unterschiedlichen Verschlüsse und Dichtungen.

Trichterkannen vereinen die Vorteile von Deckel- und Spundfass: leichtes, sicheres Handling, Umfüllen ohne Einsatz eines losen Trichters, große Reinigungsöffnung.

Deckelfässer

Spundfässer und Flaschen

Modulares Produktkonzept, vielfältige Verschlussvarianten und besonders fit für problematische Flüssigkeiten: Müller Spundfässer

Dort, wo sichere Lagerung, Transport und Handling von hochreinen, gefährlichen, toxischen Medien angesagt sind, zeigen Edelstahl-Spundfässer von Müller ihre besonderen Stärken. Der gewölbte Boden, das spaltfrei, glatt gearbeitete Fassinnere und die Anordnung der Verschlüsse garantieren eine rückstandslose Restentleerung und zuverlässige Entsorgung des Füllgutes. Und was die Sicherheit anbetrifft: Sämtliche Standardfässer

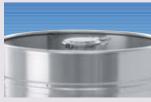
tragen die UN-Zulassung für verschiedene Stoffklassen und Gefahrstufen, z.B. UN 1A1/X2.0/700, auch für weitere, zahlreiche Bauvarianten:

- Volumengrößen von 10 bis 250 Liter in verschiedenen Durchmessern
- Werkstoffe in Edelstahl Rostfrei 1.4301, 1.4404, Hastelloy und Sonderwerkstoffe
- Oberfläche Korn 320 geschliffen, Ra ≤ 0,6 μm, für weitere Anforderungen elektrochemisch poliert, HALAR- oder PTFE-beschichtet (Flanschausführung)
- Gefalzte Fässer als Transportfässer z.B. für die Riechstoff- und Aroma-Industrie
- Ultra-Clean Ausführung für die Halbleiterindustrie

Standardverschraubung

Sterilverschraubung

Flanschverbindung


Verschlussdeckel

Rollreifen

Mantelspund

TC-Stutzen

Automatische Entleerung ist sicherer als von Hand – das Füllgut wird restlos mit Druckluft über das Steigrohr in den Produktionskreislauf gefördert.

Die sichere Alternative zu Glasflaschen im Laborbereich: Flaschen aus Edelstahl – unzerbrechlich und mit UN-Zulassung.

Für die besonderen Hygienevorschriften in der Pharmaund Halbleiterindustrie sind wir bestens vorbereitet – Ultra-Clean Spundfässer mit Sterilverschraubung, innen und außen natürlich völlig spaltfrei, GMP- und FDA-konform. Wir wollen Ihre Prozesse nicht nur sicherer, sondern auch effizienter und wirtschaftlicher machen – deshalb sind Müller Fässer auch in stapelbarer und staplergerechter Ausführung lieferbar; denn liegende Mehrwegbehälter nutzen alle Vorteile, die ein Hochregal bietet.

	2.4/01	2.4/02	2.4/03	2.4/04	2.4/05	2.3/2.5
Volumen in Liter	Standard	Ultra-Clean	gefalzt	Flansch- ausführung	mit Rollreifen	Flaschen/ Trichterkanne
			Nenn-Durchn	nesser in mm		
1,5	_	_	-	_	-	120
3,0	_	_	_	_	_	170
5,0	_	_	-	_	-	170
11,5	_	_	250	_	_	_
25	-	-	-	-	-	300
30	375	375	315	375	_	
65	-	_	375	-	-	Φ
70	375	375	_	375		Auf Anfrage
100	560	560	_	560	_	Anf
130	_	_	450	_	_	Auf
200	560	560	_	560	560	
250	_	_	600	_	_	
Anwendungen	Für Flüssigkeiten aller Art, für Gefahrgut- transporte, innen spaltfrei, UN 1A1/X2.0/700	Für hochreine Flüssigkeiten, innen und außen spaltfrei, UN 1A1/X2.0/700	Leichte Ausführung bei größeren Stückzahlen, z.B. für Essenzen/ Aromen, UN 1A1/X	Flansch als Reini- gungsöffnung, zur Installation von Spezialarmaturen, Innenbeschich- tete Fässer, innen spaltfrei, UN 1A2/X2.0/700	Ideal, wenn das Fass liegend gerollt wird, innen spaltfrei, UN 1A1/X2.0/700	Unzerbrechlich, auf Wunsch mit UN-Zulassung

Hohe Anforderungen, saubere Lösungen, verlustfreies Handling

Füllen und Umfüllen von Fässern sind besondere Situationen, denn jedes Mal kommt der Inhalt mit der Umwelt in Berührung. Symmetrische und asymmetrische Trichter mit Absperrklappen bis zur Nennweite 300 machen den ganzen Vorgang staubund verlustfrei und das nicht nur mit Fässern von Müller.

Unterschiedliche Konen und Auslaufhilfen, vom Haken bis zum pneumatischen Vibrator, unterstützen die problemlose Entleerung. Und das Schöne daran: Der Trichter wird nur aufgesetzt, wenn er gebraucht wird. Das spart Platz und ist ausgesprochen wirtschaftlich.

Deckelfässer

Spundfässer und Flaschen

Einer für alle – alle für einen: Müller Trichter

Das Müller-Trichtersystem setzt neue Maßstäbe an Sicherheit, Schnelligkeit und Wirtschaftlichkeit. Speziell konstruiert zum sicheren, staubfreien und dosierten Entleeren von Fässern. Genial durchdacht – einfach den Trichter von Hand aufsetzen, Spannring schließen, fertig. Die patentierte MC-Klappe macht das Reinigen leicht und schnell. Für schwer fließende Produkte sorgen verschiedene

Sicher, einfach

und dicht verschließbar

Auf Wunsch passend

zu Ihrem Fass (Metall,

Fibre, Kunststoff)

mit dem Fass-Spannring.

Auslaufhilfen für eine effiziente Entleerung:

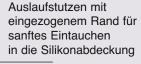
- Die Trichter gibt es mit Klappen in verschiedenen Nennweiten für alle Müller Deckelfässer von Ø 170 mm bis Ø 800 mm
- Die Trichter sind symmetrisch mit 60°, 90° - Konen oder asymmetrisch und auch in Sonderwinkeln lieferbar
- Oberfläche Korn 320 geschliffen, Ra \leq 0,6 μ m, für weitere Anforderungen elektrochemisch poliert, hochglanzpoliert, HALARoder PTFE-beschichtet

Schauglas

Vibrator

Haken/Quirl

Griffe



Rückhaltestab

Dorn-Aufnahme

Auslaufwinkel 60°/90°, asymmetrisch. Auf Wunsch Sonderwinkel

Silikon O-Ring, transparent mit FDA-Zulassung im Trichterrand eingelegt. Für weitere Anforderungen, Dichtungen in Viton, EPDM oder FEPummantelt möglich

Geniales Funktionsprinzip – selbst konische und glattwandige Fässer werden "greifbar". Die Kippvorrichtung ist direkt am Trichter angebracht. Auch geeignet für Kunststofffässer und Fibredrums.

Asymmetrische Trichter helfen schlecht fließenden Produkten auf die Beine.

Kein Störfaktor – Inliner bleiben an Ort und Stelle. Foliensäcke werden durch einen Rückhaltestab fixiert. Da kann nichts verrutschen. Nestaufnahme – das Fass immer im Mittelpunkt. In Nestaufnahmen wird das Fass mit dem Trichter automatisch zentriert und sicher an Ort und Stelle gehalten.

	3.1/01	3.1/02	3.1/03	3.2	3.3	3.4
Nenndurchmesser in mm (= Fassdurchmesser)						
Nenndur (= Fassd	sym. 60°	sym. 90°	asymmetrisch	für Fremdfässer	Einlauftrichter	Sondertrichter
		Nenn	weite Absperrklapp	e (100, 150, 200, 250	, 300)	
170	100	100	-	e G	e B	e
250	100–200	100–200	100–150	Auf Anfrage	Auf Anfrage	Auf Anfrage
315	100–250	100–250	100–200	If A	If A	ıf Aı
375	100–300	100–300	100–250	Ψ	ΑΓ	¥
450	100–300	100–300	100–300			
560	100–300	100–300	100–300			
600	100–300	100–300	100–300			
710	100–300	100–300	100–300			
800	100–300	100–300	100–300			
Anwendungen	Für Müller Fässer als Auslauftrichter für normales Schüttgut	Für Müller Fässer als Auslauftrichter für leicht fließen- des Schüttgut	Für Müller Fässer als Auslauftrichter für schwerfließen- des Schüttgut	Passend zu Ihrem Fass: Metall-Fass, Kunststoff-Fass, Fibre-Drum	Passend zu Ihrer Maschine in allen Formen	Passend zu Ihrer individuellen Aufgabenstellung

Schnell, beweglich und jederzeit einsatzbereit

Im Müller-System lassen sich Silos genauso zum Lagern und Transportieren einsetzen wie zum Mischen, Einfüllen, Umfüllen und Entleeren. Vor allem aber bestechen sie durch ihre Volumina, die von 5 bis 1200 Litern reichen. Damit sind sie vom Laboreinsatz bis zur Großchargenfertigung eine multitalentierte Systemkomponente für Flüssigkeiten, Pulver oder pastöse Medien. Durch seine große Öffnung lässt sich das Silo einfach und schnell reinigen.

Im Müller-System lassen sich die Silos mit allen anderen Modulen kombinieren; z.B. mit passenden Fahrgestellen und Zusatzkomponenten. So lässt sich dasselbe Silo wirtschaftlich einsetzen: als Sammelbehälter, als Ansatzbehälter oder als Rührbehälter.

Deckelfässer

Spundfässer und Flaschen

Konstruktiv in Aufbau und Bauform: Müller Silos

Überall da, wo nicht gekippt werden soll oder muss, lassen sich Müller Silos intelligent und wirtschaftlich in die Prozesse integrieren. Auch beim Beschicken durch die Decke. Durch ihre große Öffnung sind sie einfach und problemlos zu reinigen und schnell wieder einem neuen Befüllungsprozess zuführbar. Je nach Fließ-

verhalten der Medien stehen verschiedene Auslaufkonen zur Verfügung: symmetrisch 60° und 90° oder asymmetrisch. Auch hier sorgt die geschliffene Oberfläche für optimalen Produktaustrag.

- Werkstoffe in Edelstahl Rostfrei
 1.4541, 1.4301, 1.4404, Hastelloy
 und Sonderwerkstoffe
- Für Feststoffe und Flüssigkeiten
- Oberfläche Korn 320 geschliffen, für optimalen Produktaustrag, Ra ≤ 0,6 µm
- Für weitere Anforderungen elektrochemisch poliert, HALAR- oder PTFE-beschichtet

Schauglas

Vibrator

Haken/Quirl

Schiebegriffe

Elektrisch leitfähige Rollen

Aufnahmezapfen

Füllstutzen

Pneumatische Befüllung – das Silo wird über ein Saugrohr befüllt. Der Reinigungsfilter ist mit einem Spannring auf dem Silodeckel befestigt.

Jederzeit mobil – das Silo im praktischen Gestell, auch mit elektrisch leitfähigen Rollen. Je nach Prozessverlauf ist das Silo lose eingebettet oder fest mit dem Gestell verschweißt.

Befüllung durch die Decke – das Silo wird einfach über die Bodenöffnung gefahren, angedockt und schon kann über die Deckendurchführung direkt in die Maschine im unteren Stockwerk entleert werden.

Silo mit Füllstutzen im Deckel – so kann staubfrei und einfach befüllt werden. Drehzapfen am Mantel dienen als Aufnahmepunkt für den Hebekran oder für eine Müller-Traverse.

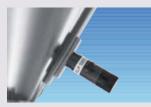
	3.6/01	3.6/02	3.6/03	6.2	6.2	6.2
Volumen in Liter	sym. 60° NW 100–300	sym. 90° NW 100–300	asymmetrisch NW 100–300 Gestell Fahrgestell		Sondergestelle	
			Nenn-Durchn	nesser in mm		
5	170	170	-	ge	g e	e O
10	250	250	250	Auf Anfrage	Auf Anfrage	Auf Anfrage
20	315	315	315	uf A	uf A	uf A
50	315/375	315/375	315/375	⋖	⋖	⋖
100	375/450	375/450	375/450			
150	450/560	450/560	450/560			
200	560/600	560/600	560/600			
300	600/710	600/710	600/710			
400	710	710	710			
500	800	800	800			
600	800	800	800			
700	950	950	950			
1000	950 1200	950 1200	950 1200			
1200	1200	1200	1200			
1200	1200	1200	1200			
Anwendungen	Für normales Schüttgut, leicht zu reinigen, NW 100–300	Für leicht fließendes Schüttgut, leicht zu reinigen, NW 100–300	Für schwer fließendes Schüttgut, leicht zu reinigen, NW 100–300	Passend zu allen Silos, in ver- schiedenen Ausführungen	Leicht zu ver- schieben, Silo lose eingesetzt, oder fest ver- schweißt	Passend zu Ihrer individuellen Aufgabenstellung

Premium XXL – ein Qualitätsanspruch der von Müller sein könnte

Immer wenn größere Mengen Produkt hergestellt und hohe Schüttgewichte im Einsatz sind, kommen Container in unterschiedlichen Größen und Formen ins Spiel. Hier ist das Containersystem von Müller gefragt, das mit seinen anforderungsgerechten Ausführungen die jeweils beste Lösung bietet. Es passt sich mit bis zu 2000 Litern Inhalt den größeren Mengen an riesel- und schüttfähigem Material an und wird gleichzeitig den hohen Anforderungen der Chemie-, Pharmaoder Lebensmittelprodukten gerecht, um die Stoffe sicher in den Produktionsprozess einzubringen. Große Volumina und hohe Gewichte brauchen nicht nur die richtigen Container, sondern auch das richtige Handling dazu. Viele Beispiele und Anwendungen finden Sie im Prospekt 1.2 Müller Handling Systeme.

Deckelfässer

Spundfässer und Flaschen


Die Anwendung bestimmt die Form: - Volumina bis 2000 Liter Müller Container

Container ist nicht gleich Container. Die Anwendung bestimmt die Form. Egal ob zylindrische Pharmacontainer, IBC's oder Rechteckcontainer, bei Müller finden Sie für jede Aufgabenstellung die richtige Lösung:

- Werkstoffe in Edelstahl Rostfrei 1.4541, 1.4301, 1.4404, Hastelloy und Sonderwerkstoffe
- Für Feststoffe und Flüssigkeiten
- Oberfläche Korn 320 geschliffen, für optimalen Produktaustrag, Ra \leq 0,6 μ m
- Für weitere Anforderungen elektrochemisch poliert, HALAR- oder PTFE-beschichtet

Schauglas

Vibrator

Schiebegriffe

Andockstation

Entlüftungsstutzen

Etiketthalter

Kennzeichnung

Runde Pharmacontainer – maximale Stabilität. Optimal zu reinigen, bestes Fließverhalten. Die Container sind für die Aufnahme mit Dorngreifer konzipiert, damit beim automatisierten Handling alles am Platz bleibt.

Ihr Produkt bestimmt die Form des Containers – hier wird der Container vom Mischer über eine Schwalbenschwanzverbindung aufgenommen und pneumatisch verriegelt.

Rechteckcontainer – die Platz sparende Lösung. Maximales Füllvolumen bei minimalen Abmessungen. Oberfläche IIIc, Ra innen \leq 0,6 μ m.

Nur beim Müller IBC – Spannringdeckel im Behälterdurchmesser. Dadurch ist der Containerinnenraum frei zugänglich für eine einfache und gründliche Reinigung.

	3.7/01	3.7/02	3.7/03	3.7/04	3.7/05	3.7/06
Volumen in Liter	sym. 60° NW 100–300	sym. 90° NW 100–300	asymmetrisch NW 100–300	sym. 60° NW 100–300	sym. 90° NW 100–300	asymmetrisch NW 100–300
>		nn-Durchmesser in ı	mm		∣ Abmessungen in mr	
100	450	450	450	_	_	_
150	450/560	450/560	450/560	_	_	_
200	560/600	560/600	560/600	-	_	_
300	600/710	600/710	600/710	_	_	_
400	710	710	710	_	_	_
500	800	800	800	0950	0950	0950
600	800	800	800	_	_	_
700	950	950	950	_	_	_
800	950	950	950	o950/o1200	0950/01200	o950/o1200
1000	1200	1200	1200	o950/o1200	0950/01200	o950/o1200
1200	1200	1200	1200	-	_	_
1500	_	_	_	o1200	01200	o1200
2000	_	-	-	o1200	o1200	o1200
Anwendungen	Pharmacontainer für normal fließende Produkte	Pharmacontainer für leicht fließende Produkte	Pharmacontainer für schwer fließende Produkte	IBC für normal fließende Produkte	IBC für leicht fließende Produkte	IBC für schwer fließende Produkte

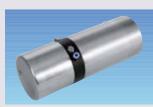
Absperren und Dosieren beim Pulverhandling leicht gemacht:

Die Klappe wurde speziell für die Pharmaindustrie entwickelt und wird heute überall da eingesetzt, wo häufiger Produktwechsel stattfindet. Die Klappe läßt sich ohne Werkzeug mit wenigen Handgriffen zerlegen und ist dadurch ausgesprochen reinigungsfreundlich. Egal ob mit Handhebel, pneumatischem Stellmotor oder elektrischem Stellungsregler – mit der patentierten MC-Klappe können alle Schnittstellen bewältigt werden. Viele Beispiele und Anwendungen zum Thema "Staubfrei" finden Sie im Prospekt 1.3 Müller Staubfrei Systeme.

Ein System für alle Fälle: Die beliebte Pharmaklappe von Müller

Die GMP- gerechte MC-Klappe von Müller ist für Schüttgüter konzipiert. Sie überzeugt auch in Bezug auf Wirtschaftlichkeit, denn sie zeichnet sich durch kurze Montagezeiten aus, ist ohne Werkzeug zerlegbar und deshalb - Auf Wunsch gibt es auch eine ATEXbesonders optimal zu reinigen. Ihre Bedienung ist einfach, zuverlässig und sicher.

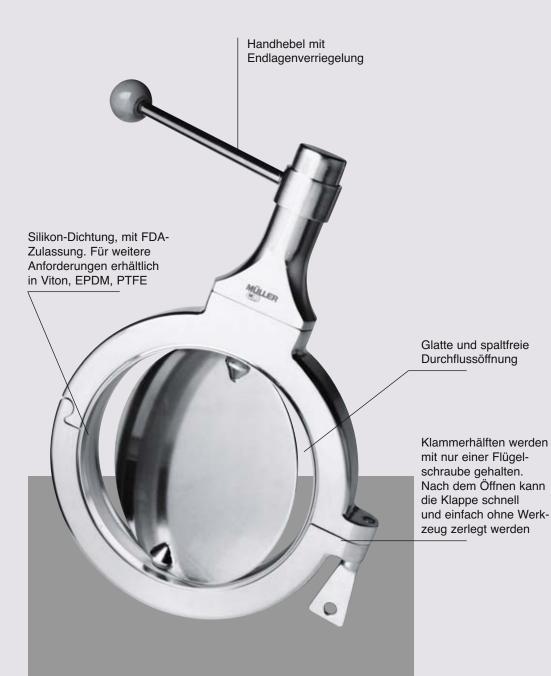
Weitere Vorteile:


- NW 100, 150, 200, 250 und 300 ab Lager lieferbar
- Produktberührte Teile in Edelstahl Rostfrei 1.4404, 1.4581, 1.4462
- Auch mit Drageeteller lieferbar für Tabletten oder Kapseln
- Niedrige Bauhöhe
- konforme Ausführung für den Einsatz in Zone 21

Dragee-Teller

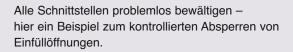
Stellmotor pneumatisch

Stellmotor mit Endlagenabfrage


Stellmotor mit Stellungsregler

Handhebel lang

Flanschklappe Typ MRF


Patentierte MC-Klappe – massive Teile in Kompaktbauweise: Flansch mit Anschweißbund, Dichtung in Lebensmittelqualität, Teller mit Achsbolzen, Verriegelung für Flanschverbindung, Klammer und Antrieb.

Alle Absperrventile auf einen Blick – MC-Klappe, MRF-Klappe, Kugelhahn, Kugelventil, Antriebe und Zubehörteile.

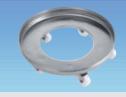
Alles unter Kontrolle – zum Absperren des Trichters und somit zum kontrollierten und dosierten Entleeren.

	7.6/0	7.6/02	7.6/01	7.6/01	7.6/01	7.6/01		7.6	01	
Nennweite in mm	Тур МС	Typ MRF	Dragee-Teller	Rotary-Klappe	Stellmotor	Stellmotor mit Auf/Zu-Abfrage	6	Dicht	ung	>
Z							Silikon	EPDM	PTFE	Viton
100	1	1	_	1	1	1	1	1	1	
150	1	1	1	1	1	1	1	1	1	irage
200	1	1	-	1	1	1	1	1	1	Auf Anfrage
250	1	1	1	1	1	1	1 1		1	Au
300	1	1	-	-	1	1	1 :	1	1	
Anwendungen	Bei häufigem Produktions- wechsel/ Reinigen, staubdicht	Kostengünstig, staubdicht	Silikonummantel- ter Klappenteller mit flexibler Dichtlippe für Tabletten, Kapseln, Dragees	Kontinuierliche Produkt- dosierung, auch ATEX- konform für EX-Zone 21	Pneumatisch, luftöffnend, federschlies- send oder luftöffnend, luftschließend, auch ATEX- konform für Ex-Zone 21	Gibt Signal Auf/Zu an übergeordnete Steuerung weiter, auch ATEX- konform für Ex-Zone 21	quali ausw	bensn tät, vechse isierba	elbar,	

Wir wollen etwas bewegen

Fassroller sind in jedem Betrieb unersetzlich, in denen Fässer ständig transportiert werden müssen.
Fassroller machen Fässer mobil und Arbeitsabläufe flexibel. Mit Fassrollern können Fässer sicher und leicht von Hand überall dahin transportiert werden, wo sie gebraucht werden.
Der Grundform nach gibt es die Müller Fassroller in zwei Typen: Die rechteckige Form mit Schiebegriff für Fässer mit verschiedenen Durchmessern oder für niedrige Fässer und eine runde Form, passend zum Fassdurchmesser.

Deckelfässer


Spundfässer und Flaschen

Sicher und flexibel von A nach B: Müller Fassroller

Die Müller Fassroller sind durchweg in Edelstahl Rostfrei 1.4301 konstruiert, das macht sie nicht nur robust und langlebig, sondern erleichtert auch die Reinigung. Die Rollen sind aus Polyamid mit Edelstahlgehäuse. Für weitere Anwendungen sind Rollen

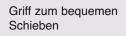
auch elektrisch leitfähig lieferbar nach ATEX für Zone 0 und 20. Die Tragkraft reicht bis 300 kg und das durchdachte Zubehörsystem bringt ungeahnte Einsatzmöglichkeiten.

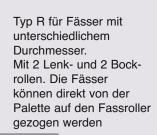
Mit Reinigungsöffnung

Elektrisch leitfähige Rollen

Positionierungsbolzen

Ausschnitt für Kugelhahn


Räder direkt am Fass



Fassroller abnehmbar

Radfeststeller

Rundum funktionell – der runde Fassroller ist besonders wendig und einfach zu positionieren.

Rundum speziell – für besondere Anwendungsfälle können die Rollen natürlich auch direkt am Fass befestigt werden.

Äußerst Flexibel - der Fassroller mit Spannring ist fest mit dem Fass verbunden und trotzdem jederzeit abnehmbar.

Leicht im Handling – mit dem Schiebegriff wird das Fass einfach unter der Befüllöffnung positioniert.

	Typ Rd	Typ R	Fasswagen	Tieflader	Sonderanfertigung	elektrisch leitfähige Rolle
			für Fassdurch	nmesser (mm)		
	315	bis 560	<u> </u>	e	e	Ë
	375	bis 600	ıfrag	ıfrag	ıfrag	iglic
	450	bis 710	Auf Anfrage	Auf Anfrage	Auf Anfrage	Ë
	500		Αn	Au	Au	olle
	560					assr
	600					<u> </u>
	710					für alle Fassroller möglich
						¥
Anwendungen	5 Lenkrollen, ein- faches und sicheres Transportmittel, Tragkraft bis 300 kg	Fässer können ab Palette direkt auf den Fassroller gezogen werden. Tragkraft bis 300 kg, für kleine Fässer	Für kurze Transportwege	Niedrige Bauhöhe	Für kunden- spezifische Anforderungen	Elektrisch leitfähige Rollen ATEX, Zone 0 und 20, Gehäuse in Edelstahl

Immer wichtiger wird eine vertrauensvolle Zusammenarbeit mit kompetenten
Partnern, die Ihr Geschäft verstehen.
Als unser Kunde erwartet Sie eine
umfassende Partnerschaft. Und Sie
bekommen die Innovation und Kompetenz einer der weltweit führenden
Unternehmens-Gruppe für Verpackung,
Handling, Transport und Systemtechnik.

Wenn Sie jetzt Lust verspüren, mit uns zu sprechen und Fragen zu stellen, dann ist dies unsere herzliche Einladung dazu.

www.muellerdrums.com

Müller AG Verpackungen Tramstrasse 20

CH-4142 Münchenstein

CH-6260 Reiden

Telefon: +41(0)61/4161200 Telefax: +41(0)61/4161222

E-Mail: info@muellerdrums.com

Telefon: +41 (0) 62/7 49 50 10 Telefax: +41 (0) 62/7 49 50 15

www.plastomatic-ag.com

Plastomatic AG Falkensteinerstrasse 4 CH-4132 Muttenz Telefon: +41(0)61/4679393 Telefax: +41(0)61/4679399

E-Mail: info@plastomatic-ag.com

www.leichtfass.com

Leichtfass AG Bahnhofstrasse 11 CH-4142 Münchenstein Telefon: +41(0)61/4113388
Telefax: +41(0)61/4113390
E-Mail: info@leichtfass.com

www.foerdertechnik.ch

Fördertechnik AG Känelmattstrasse 7 CH-4142 Münchenstein Telefon: +41(0)61/4161212 Telefax: +41(0)61/4161213 E-Mail: info@foerdertechnik.ch

Mit einem Klick neue Horizonte öffnen

Als Kunde erleben Sie Müller immer aus einem Guss. Zuständigkeiten ergeben sich nicht aus der Organisation, sondern allein durch Ihre Aufgabenstellung. Kundennähe und individuelle Beratung geben die entscheidenden Impulse. Deshalb sind wir mit 40 engagierten Vertretungen in allen bedeutenden Zentren der Industrienationen weltweit aktiv und immer vor Ort.

Erleben Sie unser Potenzial bei Ihrem nächsten Projekt. Klicken Sie sich ein in unsere Welt der Müller Systemtechnik und nutzen Sie unser Know-how packender Ideen in Edelstahl. Original von Müller Rheinfelden.

www.mueller-gmbh.com

Müller GmbH Industrieweg 5 D-79618 Rheinfelden Telefon: +49(0)7623/969-0 Telefax: +49(0)7623/969-69 E-Mail: info@mueller-gmbh.com

